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Abstract
The Dirac equation in n + 1 dimensions is derived by a simple algebraic
approach. The similarity in the structure of the arbitrary n-dimensional Dirac
equations in a central field and their solutions is discussed.

PACS numbers: 34.10.+x, 03.65.−w, 11.80.−m

The generalization of the Schrödinger equation from three dimensions to arbitrary n dimensions
is achieved by simply using the eigenvalues of the generalized orbital angular momentum L2

in place of the three-dimensional ones [1–6]. For the Dirac equation, one has to deal with the
generalized orbital and spin angular momentum operators which form the elements of a Lie
group and a Lie algebra. In a recent work [7], the n-dimensional orbital angular momentum
problem has been studied by the method of the group theory. Unfortunately, the main results
concerning the eigenvalues of the orbital–spin angular momentum interaction operator seem
to be incomplete, and do not reduce to the well-known three-dimensional results. The Dirac
equation in arbitrary n dimensions was derived by using the self-adjoint ladder operator method
some decades ago [8], though the radial Dirac equation and its solutions were not discussed.
The purpose of this work is to present a simple algebraic derivation of the Dirac equation in
n dimensions and point out the similar structure of the Dirac equations in arbitrary spatial
dimensions in a central field, and show that the exact solutions of 3D Dirac equations can be
generalized to n-dimensional Dirac equations in a straightforward way.

The Dirac equation for a central field in n + 1 dimensions can be written as

ih̄
∂�

∂t
= H�, H = c

n∑
j=1

αjpj + βmc2 + V (r), (1)

where m is the mass of the particle, V (r) denotes spherically symmetric central potential and
n matrices αi satisfy the anti-commutative relations

αiαj + αjαi = 2δij , (2)

with δij being the Kronecker delta.
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The Dirac equation for a central field can be separated without approximation in spherical
coordinates. This procedure involves finding the eigenfunction of the interaction of orbital
and spin angular momenta. We start by defining radial momentum and velocity operators

pr = r−1


 n∑

j=1

xjpj − ih̄
n − 1

2


 , (3)

αr = r−1


 n∑

j=1

αjxj


 . (4)

Introducing the operator κ that is related to the total angular momentum,

h̄κn = β


 n∑

i<j

σijLij + h̄
n − 1

2


 (5)

the Dirac Hamiltonian can be rewritten in the following form:

H = cαrpr +
ih̄c

r
αrβκ + βmc2 + V (r). (6)

Thus, the problem of finding the eigenvalues of H is converted into finding those of κn. Note
that the orbital angular momentum operators defined by

Lij = xipj − xjpi = −i

[
xi

∂

∂xj

− xj

∂

∂xi

]
, (7)

satisfy the following algebraic relations:
Lij = −Lji, Lij = L

†
ij , (8)

[Lij , Lik] = iLjk, (9)

[Lij , Lkl] = 0, for i �= j �= k �= l, (10)

LijLkl + LkiLjl + LjkLil = 0, for i �= j �= k �= l, (11)

where the indices i, j, k, l, take the values 1, 2, . . . , n; n being the dimension of the space.
The quantities Lij form the elements of a Lie algebra, which has a single Casimir invariant,
namely the total orbital angular momentum

L2 =
n∑

i<j

L2
ij . (12)

The generalized spin angular momentum σij is defined by

σij = −i

2
[αi, αj ], (13)

which satisfy the following relations:

σij = −σji, σij = σ
†
ij , (14)

σ 2
ij = 1, (15)

[σij , σik] = iσjk, for i �= j �= k, (16)

[σij , σkl] = 0, for i �= j �= k �= l. (17)
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We now calculate the eigenvalue of κn via a new operator

L =
n∑

i<j

σijLij , (18)

so that κn = β[L + (n − 1)/2]. Since [H,L] = 0, [L2,L] = 0, H,L2, and L have common
eigenfunctions, the eigenvalues of L can be found by establishing a relation between L and
L2. We start with the following quantity:

L2 =
n∑

i<j

n∑
k<l

σijLijσklLkl, (19)

which can be calculated by dividing it into three parts. The first part is given by

L2
1 =

n∑
i<j

(σijLij )
2 = L2, (20)

which is a partial sum of those terms with paired equal indices, i.e., i = k, and j = l. The
second sum includes all those terms that can be contracted into σijLij in accordance with
conditions (8) and (14). They are

L2
2 =

n∑
i<j


 i−1∑

k=1

σkiLkiσkjLkj +
n∑

k=j+1

σikLikσjkLjk

j−1∑
k=i+1

σkjLkjσikLik


 = −(n − 2)L. (21)

The third part accounts for all terms with unequal indices, which can be written as

L2
3 =

n∑
i<j

n∑
k<l

σijLijσklLkl, i �= j �= k �= l. (22)

Due to the symmetry of the terms in the sum (18), one finds that all terms appeared in (20)
can be covered by summing up only the following triple terms:

σijLijσklLkl + σikLikσjlLjl + σjkLjkσilLil

= σijσkl(LijLkl + LkiLjl + LjkLil) = 0, i < j < k < l. (23)

Here we have made use of (9) and (15). It can be shown that the number of terms involved in
each partial sum are N1 = n(n − 1)/2 in L2

1, and N2 = n(n − 1)(n − 2) in L2
2. The number

of terms in L2
3 is given by

N3 = 6
∑

i<j<k<l

1 = 1

4
n(n − 1)(n − 2)(n − 3). (24)

It is easy to see that N1 + N2 + N3 = N = [n(n − 1)/2]2. From equations (20), (21) and (23),
we find

L2 = L(L + n − 2). (25)

Since the eigenfunctions of L2 are doubly degenerate we may write

L�1 = l�1, (26)

L�2 = −(l + n − 2)�2, (27)

which lead to

L2�i = l(l + n − 2)�i, i = 1, 2. (28)
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Thus, the eigenvalues of κn can be written as

κn = ±
(

j +
n − 2

2

)
, j = l ± 1/2 (29)

or

κn =
{

−(
l + n−1

2

)
, j = l + 1/2

l + n−3
2 , j = l − 1/2

which are the same as derived in [9]. By introducing two-component wavefunction

� = r− n−1
2

(
iG
−F

)
we obtain the radial Dirac equation in n dimensions

h̄c
dG

dr
+

h̄cκn

r
G − [E + mc2 − V (r)]F = 0,

(30)
−h̄c

dF

dr
+

h̄cκn

r
F − [E − mc2 − V (r)]G = 0,

which can be reduced to the Dirac equation in two dimensions with κ2 = ±j , and in three
dimensions with κ3 = ±(j + 1/2), for j = l ± 1/2.

From the structure of the radial Dirac equation in n dimensions, it follows that all the
exact solutions to the 3D Dirac equations can be translated into the exact solutions of the
Dirac equations in arbitrary dimensions with n > 1, by a simple substitution of κ by κn.
As an example, let us analyse the solution of the D-dimensional radial equations for a Dirac
particle in a Coulomb potential V (r) = −Zα/r . (Henceforth, we use D to denote the spatial
dimension in place of n, to avoid confusion with the principal quantum number.) From
section 9.6 of [9], we find that the normalized radial wavefunctions are given by

G(r)

F (r)

}
= ±(2λ)3/2

	(2γD + 1)
×

√
(mc2 ± E)	(2γD + n′ + 1)

4mc2 (n′+γD)mc2

E

[
(n′+γD)mc2

E
− κD

]
n′!

× (2λr)γD e−λr

{[
(n′ + γD)mc2

E
− κD

]

×F(−n′, 2γD + 1, 2λr) ∓ n′F(1 − n′, 2γD + 1, 2λr)

}
(31)

with the eigenvalues

E = mc2

{
1 +

(Zα)2[
n − |κD| + (D − 3)/2 +

√
κ2

D − (Zα)2
]2

}−1/2

, (32)

where n′ = 0, 1, 2, . . ., and the principal quantum number is defined by n = n′ + |κD| − (D −
3)/2 = 1, 2, . . .. The other parameters are defined by

λ = (m2c4 − E2)1/2

h̄c
, (33)

γD = κ2
D − (Zα)2 =

(
j +

D − 2

2

)2

− (Zα)2. (34)

Another interesting case is to find the stationary continuum state of a Dirac particle in a
Coulomb field, in arbitrary D dimensions. Generalizing the derivation in section 9.9 of [9] to
D dimensions, we find the wavefunction
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G = C1(2pr)γD e
πλ
2 |	(γD + iλ)|

2(πp)1/2	(2γD + 1)
{e−ipr+iηD (γD + iλ)F (γD + 1 + iλ, 2γD + 1, 2ipr) + c.c.},

(35)

F = C2(2pr)γD e
πλ
2 |	(γD + iλ)|

2(πp)1/2	(2γD + 1)
{e−ipr+iηD (γD + iλ)F (γD + 1 + iλ, 2γD + 1, 2ipr) − c.c.},

(36)

and the Coulomb phase shift

δD = y ln(2pr) − arg 	(γD + iy) − πγD

2
+ ηD, (37)

where

p = (E2 − m2c4)1/2

h̄c
= iλ, (38)

γ 2
D = κ2

D − (Zα)2, (39)

y = ZαE

h̄cp
, (40)

e2iηD = κD − iymc2/E

γD + iy
(41)

and C1 and C2 are normalization constants.
In conclusion, we have derived the n-dimensional Dirac equation in a central field, which

can be reduced to the well-known forms of D = 2 and D = 3. By the similarity in the structure
of the differential equation, the formal solutions of the D-dimensional Dirac equation can be
obtained directly from those of 3D Dirac equations for exactly soluble potentials, with minimal
modifications in those parameters that are determined by the spatial dimension n.
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